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Abstract
Continuous time random walk (CTRW) models are widely used to model
diffusion in condensed matter. There are two classes of such models,
distinguished by the convergence or divergence of the mean waiting time.
Systems with finite average sojourn time are ergodic and thus Boltzmann–
Gibbs statistics can be applied. We investigate the statistical properties of
CTRW models with infinite average sojourn time; in particular, the occupation
time probability density function is obtained. It is shown that in the non-
ergodic phase the distribution of the occupation time of the particle on a given
lattice point exhibits bimodal U or trimodal W shape, related to the arcsine
law. The key points are as follows. (a) In a CTRW with finite or infinite
mean waiting time, the distribution of the number of visits on a lattice point
is determined by the probability that a member of an ensemble of particles
in equilibrium occupies the lattice point. (b) The asymmetry parameter of the
probability distribution function of occupation times is related to the Boltzmann
probability and to the partition function. (c) The ensemble average is given
by Boltzmann–Gibbs statistics for either finite or infinite mean sojourn time,
when detailed balance conditions hold. (d) A non-ergodic generalization of the
Boltzmann–Gibbs statistical mechanics for systems with infinite mean sojourn
time is found.

1. Introduction

In Nature, one encounters many phenomena in which some quantity varies with time in a
very complicated way. There is no hope of determining this variation in detail, but it may be
true that certain averaged features vary in a way that can be described by simple laws. The
averaging over a suitable time interval is an awkward procedure; one therefore replaces the
irregularly varying function of time by an ensemble of functions. All averages are redefined as
averages over the ensemble rather than over some time interval of the single realization of the
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time varying quantity. Van Kampen [1] clarifies the concept described above, by considering a
bounded Brownian motion. One may actually observe a large number of particles and average
the result; that means that one has a physical realization of the ensemble. One might also
observe one and the same particle on a long time interval; the results from these two averaging
procedures will be the same if one assumes that sections of the single-particle trajectory are
statistically independent. In a single-molecule experiment one usually performs an observation
on one particle during some time interval; thus the time average is the observed quantity rather
than the ensemble average [2]. The condition for ergodicity of the system, namely that time
averages and ensemble averages coincide, is that the behaviour of the measured signal during
one interval does not affect the behaviour during the next interval. The time average of any
physical quantity is defined as

f̄ = 1

t

∫ t

0
f (t ′) dt ′. (1)

In order for the condition of ergodicity to be fulfilled it should be possible to represent it also
as

f̄ = 1

N

N∑
i=1

fi , (2)

where fi is a short time average

fi = 1

τ

∫ iτ

(i−1)τ
f (t ′) dt ′ (3)

and τ = t/N . As usual we take the limit where t → ∞ and N → ∞ such that τ remains finite.
Then ergodicity requires that the fi s are statistically independent, which means that there exists
some time interval τ which is longer than the microscopic timescale of the system but short
compared to the total measurement time. The basic assumption is that such an intermediate
interval exists; if that is not so, ergodicity is broken and different methods are needed. If the
microscopical timescale for the dynamics diverges, we expect a non-ergodic behaviour, since
the microscopic timescale is always of the order of the macroscopic total measurement time
and no intermediate time interval τ exists.

Ergodicity is a key concept for Boltzmann equilibrium, where Boltzmann’s probability

pB(σ ) = e− H (σ)
kB T

/∑
σ ′

e− H (σ ′ )
kB T (4)

is the probability (in the ensemble sense) of finding the system in state σ . Another important
quantity is the fraction of time for which the system occupies a given state σ during a
measurement,

p̄t (σ ) = Tσ /t, (5)

where Tσ is the time of occupation of state σ , and t is the total measurement time. The time
average then can be written as

f̄ =
∑
σ

p̄t (σ ) f (σ ) , (6)

while the ensemble average of the same quantity is given by

〈 f 〉 =
∑
σ

pB (σ ) f (σ ) . (7)

For a canonical ergodic system in equilibrium, p̄t(σ ) = pB(σ ), and thus the two averages
coincide. For non-ergodic systems, knowledge of the occupation time of each state is needed
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in order to predict statistical behaviour of the system, since even in equilibrium the average is
determined by p̄t and not by pB.

Following Bouchaud [3] we distinguish between two different types of non-ergodicity.
Strong non-ergodicity is the case where the system phase space is divided into unconnected
regions, which make it impossible for the system to visit all of its phase space. The more
interesting case to our mind is weak non-ergodicity. In this case the phase space is fully
connected; moreover the system does visit all of its phase space but the fraction of time of
occupation of a given volume in phase space is not equal to the fraction of phase space volume
occupied by it. In what follows we refer to weak ergodicity breaking as non-ergodicity.

In this paper we show that the continuous time random walk (CTRW) [4] with a probability
density function (PDF) of waiting times which decays as a power law, i.e., ψ(τ) ∝ 1

τα+1 as
τ → ∞ and 0 < α < 1, displays a non-ergodic behaviour. The CTRW is widely used for
describing anomalous diffusion [5, 6]. In a CTRW, unlike in a discrete random walk, the
sojourn time at each site is a random variable drawn from a PDF, ψ(τ). If the mean sojourn
time is finite, we can find an intermediate time interval such that the time average and the
ensemble average coincide. On the other hand, if the PDF is broad, such that the mean sojourn
time is infinite, there is no characteristic timescale in the system, and thus the system is not
ergodic. For non-ergodic systems the Boltzmann–Gibbs statistics fails, and the question which
arises is, how we can describe equilibrium and near equilibrium states of such a system?

This question is timely, as experiments on single-molecule dynamics are performed—for
example, the experiment on the motion of particles in a complex actin network (i.e., a network
of polymers) [7]. It was found that the particle displays a subdiffusive motion, i.e., 〈�x2〉 ∝ tα

with 0 < α < 1 (α depends only on the ratio of the particle size to the network mesh size).
It was also found that the PDF of the sojourn time has a power law asymptotic behaviour
ψ(τ) ∝ τ−(1+α), a CTRW behaviour. There are many other systems which show a similar
behaviour and are believed to be describable using CTRW models [5, 6]; examples of such
systems are the laser cooling of atoms [8], blinking nanocrystals [9, 10], and virus motion in
a living cell [11, 12]. In all these systems the origin of the non-ergodic behaviour is the very
broad (power law) distribution of the relevant sojourn times (see [13] and references therein
for a brief review of systems with broad waiting times, and for a discussion on the relation
between power law distributions and non-ergodicity see [14]).

In this paper we study a CTRW model in the non-ergodic phase; we find the PDF of the
fraction of occupation time p̄t (see equation (5)). A brief summary of our results was published
recently [15]. The outline of the paper is as follows. In section 2, the model is introduced,
and the importance of the first-passage time for analysis of the occupation time distribution is
emphasized. In section 3, the PDF of the first-passage time in the biased CTRW is obtained
(previous work considered the unbiased case in detail [16]). The relation between the fraction
of occupation time PDF and the equilibrium occupation probability is discussed in section 4;
in this context section 5 presents the visitation fraction distribution and shows how it leads
to the generalized arcsine PDF of occupation times. In the last section we present results of
numerical simulations and discuss the relation to Boltzmann–Gibbs statistical mechanics.

2. The model and relation between the discrete time RW and CTRW

We consider a particle motion in a one-dimensional lattice; each step is independent of the
previous steps, and the step length is equal to the lattice spacing. The particle stays at each
site for a random time τ , with a PDF

ψ(τ) ∼ at−(1+α)/|�(−α)| (for τ → ∞), (8)
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where a is a parameter with units [τα], and 0 < α < 1, leading to a diverging mean sojourn
time. In Laplace τ → u space, the small u behaviour of the PDF is

ψ̂ (u) ∼ 1 − auα + · · · , (9)

where ψ̂(u) is the Laplace transform of ψ(τ). The lattice is finite, of length N + 1, and the
boundaries on x = 0 and x = N are reflecting. The probability of jumping left from site x is
ql(x), and that of jumping right is 1 − ql(x). This probability may change from site to site.
This kind of motion is a generalized CTRW. Our aim is to calculate the PDF of the fraction
of occupation time for each site in the lattice ft ( p̄t(x)) (where p̄t(x) = Tx/t , Tx is the total
occupation time of site x , and t is the total measurement time), in order to study and quantify
the ergodic properties of the model.

We consider a two-state process. One state is when the particle is at the site of interest (say
x) and the other one is when the particle is at any other site of the lattice. Accordingly there
are two different sojourn time PDFs; for the sojourn time at the site, the PDF isψ+(τ ) = ψ(τ),
while for the sojourn time outside the observed cell, the PDF is denoted byψ−(τ ). ψ−(τ ) is a
combination of the first-passage-time (FPT) PDF when the particle starts at x − 1 and reaches
x , ψ fpt

Lx (τ ), and the FPT PDF when the particle goes from x + 1 to x , ψ fpt
Rx (τ ), where each of

them is multiplied by the probability of jumping from x to the left or to the right respectively,
i.e.,

ψ−(τ ) = ql(x)ψ
fpt
Lx (τ ) + [1 − ql(x)]ψ

fpt
Rx(τ ). (10)

In order to calculate the FPT PDF in the CTRW model we introduce a general relation between
the survival probability of a CTRW particle and the survival probability in a discrete time
random walk (RW) [17]. Let SCT(t) be the survival probability of a CTRW particle, i.e., the
probability that the particle did not arrive at site x , up to time t . One can express SCT(t) as the
sum over n of the survival probabilities after n jumps in a discrete time random walk, SDis(n),
where each term has a weight given by w(n, t)—the probability that n jumps occurred in the
interval (0, t). Namely

SCT(t) =
∞∑

n=0

w(n, t)SDis(n). (11)

In Laplace space it takes the form

ŜCT(u) = 1 − ψ̂(u)

u

∞∑
n=0

ψ̂n(u)SDis(n)

= 1 − ψ̂(u)

u
S̃Dis[ψ̂(u)], (12)

where we used

ŵ (n, u) = 1 − ψ̂ (u)

u
ψ̂n (u) ,

and˜denotes the z transform defined as

S̃ [z] =
∞∑

n=0

zn S(n). (13)

The first-passage-time PDF is given by minus the derivative of the survival probability with
respect to the time t; in Laplace space it reads

ψ̂ fpt(u) = −uŜCT(u) + SCT (t = 0)

= −S̃Dis[ψ̂(u)](1 − ψ̂(u)) + 1. (14)

Following equation (14), we first find the FPT probability in the discrete time RW model and
later derive from it the FPT PDF for the CTRW.
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3. The first-passage-time PDF for the biased CTRW

We consider a biased CTRW, i.e., ql(x) = ql for any x (excluding the boundaries). The
calculation for the case ql = 1/2 was given in [16]. To calculate the first-passage-time PDF
we start with a discrete time RW model. The particle starts at x − 1 and we calculate the
PDF for the first time it arrives at x (i.e., ψ fpt

Lx (τ )). The boundary conditions are: (a) site 0
is a reflecting boundary; (b) site x is an absorbing site. The master equations describing this
model are

p0(n) = ql p1(n − 1)

p1(n) = ql p2(n − 1) + p0(n − 1)

py(n) = [1 − ql]py−1(n − 1) + ql py+1(n − 1)

px−1(n) = [1 − ql]px−2(n − 1)

px(n) = [1 − ql]px−1(n − 1) + px(n − 1)

Fx (n) = [1 − ql]px−1(n − 1),

(15)

where y is limited to the range 2 � y � x − 2. Fx(n) is the probability of first arriving at site
x after the nth step, and py(n) is the probability of being at site y after the nth step. In this
case the survival probability SLx(t) (i.e., the probability of not arriving at site x up to time t
starting at x − 1) is given by

SLx (t) = 1 − px(t) =
∞∑

n=0

w(n, t)[1 − px(n)]

=
∞∑

n=0

w(n, t)[1 − px(n − 1)− (1 − ql)px−1(n − 1)], (16)

where px(t) is the probability that the particle is at site x at time t . In Laplace space

ŜLx (u) = 1 − ψ̂ (u)

u

∞∑
n=0

ψ̂n (u)
[
1 − px (n − 1)− (1 − ql) px−1 (n − 1)

]
. (17)

Combining equations (17) with (15) and performing some algebra,we can rewrite equation (17)
as

ŜLx (u) = 1

u
(1 − F̃x [ψ̂(u)]). (18)

Using equations (14) and (18) we write for the FPT PDF

ψ̂
fpt
Lx (u) = F̃x [ψ̂(u)]. (19)

Now we turn to solving the discrete time model in order to obtain F̃x [ψ̂(u)]. We
use a method presented by Redner [18]; we start by performing a z transform (defined in
equation (13)) of the master equation (15), which is then rewritten as

p̃0(z) = zql p̃1(z)

p̃1(z) = zql p̃2 (z) + z p̃0(z)

p̃y(z) = ql z p̃y+1(z) + [1 − ql]z p̃y−1(z)

p̃x−1(z) = [1 − ql]z p̃x−2(z) + 1

p̃x(z) = [1 − ql]z p̃x−1(z) + z p̃x(z)

F̃(z) = [1 − ql]z p̃x−1(z).

(20)
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By substituting the first equation into the second one we get a relation between p̃1(z) and
p̃2(z), and so on, and equation (20) can be rewritten as

p̃0(z) = zql p̃1(z)

p̃1(z) = zql

1 − z2ql
p̃2(z)

p̃2(z) = zql

1 − [1 − ql] z zql

1−z2ql

p̃3(z)

·
p̃x−1(z) = [1 − ql] zϕx−2 p̃x−1(z) + 1

p̃x(z) = [1 − ql]z p̃x−1(z) + z p̃x(z)

F̃(z) = [1 − ql] z

1 − [1 − ql]zϕx−2
p̃x−1(z).

(21)

The general relation is

p̃x (z) = ϕx (z, ql) p̃x+1 (z) . (22)

As seen from equation (21), the recursion relation for ϕy reads

ϕy = zql

1 − z [1 − ql]ϕy−1
, (23)

and the seed of the recursion relation is
ϕ0 = zql

ϕ1 = zql

1 − z2ql
.

(24)

The recursion relation is solved in appendix A using a method introduced by Goldhirsch and
Gefen [19]. Substituting the solution into equation (21) yields

F̃ (z) = [1 − ql] z

1 − z2ql [1 − ql]
A+λ

L−3
+ +A−λL−3

−
A+λ

L−2
+ +A−λL−2−

, (25)

where

λ± = 1 ± √
1 − 4z2ql [1 − ql]

2
(26)

and

A− =
(
1 − z2ql

) − λ+[
λ− − λ+

] ; A+ = − (
1 − ql z2

)
+ λ−[

λ− − λ+
] . (27)

The asymptotic behaviour of the first-passage time is obtained by substituting into F̃[ψ̂(u)]
the asymptotic behaviour of ψ̂(u) as u− > 0 (equation (9)); we find

ψ̂
fpt
Lx (u) = 1 − a

1 − 2 [1 − ql]1−x ql

1 − 2ql
uα + · · · . (28)

The FPT PDF for the case where the particle starts at x + 1 and reaches x , ψ̂ fpt
Rx(u), is obtained

by replacing x by N − x and ql by 1 − ql in the expression for ψ̂ fpt
Lx (u). Writing explicitly

ψ̂
fpt
Lx (u) and ψ̂ fpt

Rx(u) in equation (10), we find

ψ̂− (x, u) � 1 − A∗
xuα + · · · , (29)

where

A∗
x ≡ a

[
2

2ql − 1

(
q2

l

[
ql

1 − ql

]x−1

− [1 − ql]2

[
1 − ql

ql

]N−x−1
)

− 1

]
. (30)
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Figure 1. Lamperti’s PDF equation (32) with R = 1. The dash–dotted curve corresponds to
α = 0.3. The PDF attains its maxima around 1 and 0, while the probability of obtaining the
ergodic expectation value (1/2 in this case) is almost zero. The dotted curve and the solid curve
correspond to α = 0.8, 0.95 respectively. As α approaches 1, the ergodic behaviour is recovered.
When α = 1 the PDF becomes a delta function centred at the ensemble average η = 1/2.

As mentioned, the process of occupying site x , then disengaging from it, reoccupying x , etc,
can be thought of as a two-state process with waiting times given by ψ± respectively, and
the PDF of the fraction of occupation time p̄t (x) is found on the basis of Lamperti’s limit
theorem [20]:

ft ( p̄t (x)) = δα
(
a/A∗

x, p̄t (x)
)
, (31)

where

δα (R, η) = sin (απ)

π

Rηα−1 (1 − η)α−1

R2 (1 − η)2α + η2α + 2R (1 − η)α ηα cos (απ)
. (32)

In appendix B, equations (31), (32) are derived. R is called the asymmetry parameter; the
case R = 1 corresponds to a symmetric PDF (see figure 1). For the unbiased CTRW where
ql = 1/2, equation (30) simplifies to

A∗
x ≡ a [N − 1] . (33)

In figures 1, 2 we show some plots of the PDF equation (31). Note that previously non-trivial
occupation time PDFs were investigated in the context of a diffusing particle in a random
medium [21] and for a class of stochastic processes [22, 23].

4. Equilibrium distribution and its relation to the occupation time PDF

We express the result of equation (31) in terms of the equilibrium probability of being at site
x , peq(x). peq(x) is the probability of finding a single member of a large ensemble of non-
interacting particles in equilibrium, on the lattice cell x . Note that for a finite system, peq(x)
is independent of the sojourn time PDF. One can verify easily that for the biased CTRW

peq(x) = �

(
1 − ql

ql

)x

0 < x < N

peq(0) = � (1 − ql)

peq (N) = � (1 − ql)

(
1 − ql

ql

)N−1

,

(34)
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t(x
=
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Figure 2. The PDF of the fraction of time of occupation of the site x = 1 ( p̄t (x = 1)), during
a CTRW in the presence of constant bias; ql = 0.2, 0.51, 0.8 respectively. We used N = 9 and
α = 0.3. For ql = 0.2 the particle is found mostly in the vicinity of the boundary on x = 9; hence
we most probably find p̄t (x = 1) � 0. For α = 0.3 the PDF of the fraction of occupation times
exhibits bimodal behaviour; the average is not likely to be observed in a measurement.

where � is the normalization factor. Using equations (30) and (34) one can express the
asymmetry parameter as

Rx ≡ a/A∗
x = peq (x)

1 − peq (x)
. (35)

Assume that the RW obeys the detailed balance relation between the probabilities of

jumping right and left. This means that ql

1−ql
= e− ξ

kB T , where  is the constant force, ξ is the
lattice spacing, kB is the Boltzmann constant, and T is the temperature. In this case peq(x) is
just the well known Boltzmann probability and equation (35) reads

Rx = pB (x)

1 − pB (x)
. (36)

It is worth mentioning that, as shown here, the detailed balance relation does not necessarily
imply ergodicity of the system, but an equilibrium distribution in an ensemble sense which is
given by the Boltzmann probability.

5. Visitation fraction and the generalized arcsine PDF

To generalize our results beyond the uniformly biased CTRW, we study the distribution of the
number of visits in the x th cell nx , given that during the measurement time there were n visits
(i.e., jumps between cells). The master equation describing the evolution of the probability of
occupying site y after n jumps in the CTRW is identical to the master equation describing the
discrete time RW, namely

px (n) = ql (x + 1) px+1 (n − 1) + (1 − ql (x − 1)) px−1 (n − 1) (37)

(excluding the reflecting boundaries). For the discrete time RW we assume ergodicity of the
process, implying

nx/n = peq (x) , (38)
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where peq(x) is the probability of occupying site x in equilibrium, in the ensemble sense. peq(x)
is defined by the condition that px(n) = px(n − 1) = peq(x) in the limit n → ∞. peq(x)
and the visitation fraction nx/n are related to the master equation, equation (37), and to the
lattice properties, but not to the waiting time PDF. Thus equation (38) holds for both discrete
and continuous time RW. For a discussion on the transformation between the discrete time
RW and the CTRW (subordination) in the context of the fractional Fokker–Planck equation,
see [24–26]. In the case of finite mean waiting time 〈τ 〉, the fraction of occupation time may
be written as

Tx/t � nx 〈τ 〉 /n 〈τ 〉 = nx/n, (39)

which together with equation (38) implies ergodicity of the system. For a CTRW with diverging
mean waiting time the PDF of the occupation time is derived as follows.

We denote by f 0
n,t(Tx) the PDF of Tx in the case where the particle is not at x at the end

of the measurement. f 0
n,t (Tx) is written as

f 0
n,t (Tx) =

〈
δ

(
Tx −

∑
iεx

τi

)
I (tn < t < tn+1)

〉
, (40)

ti is the time at which the i th jump occurs, and τi is the i th sojourn time in x (see figure B.1
in appendix B). I (tn < t < tn+1) = 1 if the statement in parentheses is true, and 0 otherwise.
The brackets 〈 〉 denote the average over all τ ′s. The summation is over all sojourn times in x .
Performing a double Laplace transform of equation (40) yields

f̂ 0
n,s (u) =

〈∫ ∞

0

∫ ∞

0
e−uTx e−stδ

(
Tx −

∑
iεx

τi

)
I (tn < t < tn+1) dTx dt

〉

= ψ̂nx (u + s)ψ̂n−nx (s)(1 − ψ̂ (s))

s
, (41)

where we assume nx visits in x . Like in equation (40), the PDF of Tx in the case where the
particle is within the x th cell at the end of the measurement is denoted by f 1

n,t (Tx); that is,

f 1
n,t (Tx) =

〈
δ

(
Tx −

[∑
iεx

τi + τ ∗
])

I (tn < t < tn+1)

〉
, (42)

where τ ∗ ≡ t − tn is the time between the last jump and the end of the measurement (see
figure B.1), and in double Laplace space

f̂ 1
n,s (u) = ψ̂nx (u + s) ψ̂n−nx (s)

1 − ψ̂nx +1 (u + s)

(s + u)
. (43)

The probability for the particle to be within the x th cell at the end of the measurement is
given by peq(x). Thus the double Laplace transform of the PDF of the occupation time of the
x th cell, given that there were n jumps between cells during a measurement of time t , is given
by

f̂n,s (u) = peq (x) f̂ 1
n,s (u) +

(
1 − peq (x)

)
f̂ 0
n,s (u) . (44)

Substituting equations (41) and (43) in (44), and using equation (38) we rewrite f̂n,s(u) as

f̂n,s (u) �
[

peq (x)
1 − ψ̂ (u + s)

(s + u)
+

(
1 − peq (x)

) 1 − ψ̂ (s)

s

]

×
(
ψ̂ peq(x) (u + s) ψ̂1−peq(x) (s)

)n
, (45)
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where we replaced nx with peq(x)n (equation (38)). Summing over the number of events
during the measurement, n, one obtains

f̂s (u) =
∑

n

f̂n,s (u) =
[

peq (x)
1 − ψ̂ (u + s)

(s + u)
+

(
1 − peq (x)

) 1 − ψ̂ (s)

s

]

× 1

1 − ψ̂ peq(x) (u + s) ψ̂1−peq(x) (s)
, (46)

an equation valid only in the scaling limit. Taking the limit s, u → 0 (using equation (9)),
which corresponds to the long measurement and occupation time limit,one finds the asymptotic
behaviour of f̂s(u) as

f̂s (u)s,u→0 ∼ peq (x) (u + s)α−1 +
(
1 − peq (x)

)
sα−1

peq (x) (u + s)α +
(
1 − peq (x)

)
sα

. (47)

Inverting the double Laplace transform [27] yields the PDF of the fraction of occupation time:

f

(
Tx

t

)
= δα

(
Rx ,

Tx

t

)
where Rx = peq (x)

1 − peq (x)
. (48)

This equation is the main result of this section; it recovers the special case of a uniformly
biased CTRW of equation (31).

Remark. The concept of the visitation fraction discussed in this section allows us to define
more precisely the different types of ergodicity breaking. A system is said to be ergodic if the
visitation fraction of each site is equal to the fraction of occupation time, which in turn is equal
to the equilibrium probability of occupying the site in the ensemble sense, equation (39). If
the visitation fraction obeys equation (38), but is not equal to the fraction of occupation time,
the system is said to be weakly non-ergodic. If the process does not obey equation (38) for the
visitation fraction, and the fraction of occupation time is not equal to the ensemble equilibrium
probability, the process is said to be strongly non-ergodic. Note that since weakly non-ergodic
systems obey the relation (38), a statistical mechanical description is still possible, unlike in
strongly non-ergodic systems [29].

6. Discussion

If we imply the detailed balance condition, the equilibrium probability is given by Boltzmann
probability,

pB(x) = e− U (x)
T

/∑
y

e− U (y)
T (49)

where U(x) is the potential at the x th cell and T is the temperature. The asymmetry parameter
in this case is Rx = pB(x)

1−pB(x)
. Then equation (48) yields a relation between the non-ergodic

dynamics and the partition function.
The asymmetry parameter Rx can be written as Rx = Ze

U (x)
T − 1, where Z is the partition

function. It can also be written as the partition function of the system excluding the site x ,
where the energies are measured relative to the energy of site x , i.e.,

Rx = Z ′ = Ze
U (x)

T − 1

= e
U (x)

T

∑
y

e− U (y)
T − 1 =

∑
y �=x

e− [U (y)−U (x)]
T . (50)
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Figure 3. The visitation fraction in each cell for different values of α in an unbiased CTRW.
nx /n = peq(x) = 1/N (beside x on the boundary) both for the ergodic case α > 1 and for the
non-ergodic phase α < 1. The visitation fraction is obtained from a single trajectory.

The distribution of the visitation fraction in each cell was verified using numerical
simulations, which give an estimate of the time needed to converge to the long time limit.
The waiting time PDF that we used in all the numerical simulation is

ψ (τ) = ατ−(1+α) for τ > 1. (51)

In figure 3 we show the distribution of the visitation fraction in an unbiased CTRW (ql = 1/2)
for ergodic and non-ergodic cases (α > 1 and α < 1 respectively). In both cases, the visitation
fraction in each cell (excluding the reflecting boundaries) is equal; however, as was found
above (equation (32)), the occupation time is a random variable in the non-ergodic case.

The visitation fraction, equation (38), and the fraction of occupation time PDF,
equation (48), allow us to generalize our results to the question of the fraction of occupation
time of M < N cells and not necessarily one. This is important for coarse grained description
of CTRW systems. In figure 4 we show the PDF of the fraction of occupation time of M cells,
for the case of an unbiased CTRW (reflecting boundary condition), and a system of size N + 1.
In this case (see equation (50)) Rx = M/(N + 1 − M) for any M lattice points excluding the
boundary points.

In order to verify the validity of the visitation fraction rule, equation (38), in a thermal
model, we performed a simulation of a motion in a harmonic potential with finite temperature.
The motion is similar to the motion presented in section 2; the sojourn time at each site is
randomly distributed from the PDF equation (51). For each site there is a detailed balance
relation between the probability of jumping to the left and the probability of jumping to the
right (see the details in [15]). The distribution of the visitation fraction for different values
of α is shown in figure 5; as expected, it coincides with the ensemble average, which in turn
coincides with Boltzmann distribution, i.e., nx/n = pB(x). The time it took for the system
to converge to the distribution presented is 105, 108, 1016 for α = 2, 0.8, 0.3 respectively.
Note that this time is not a machine time, since the number of operations is determined by
the number of jumps (visits) which is the same for all cases (we used n = 105). During the
motion we also measured the time that the particle stays at a specific site; we repeated the
procedure many times and then obtained the statistics for the occupation time of the site. It
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Figure 4. The PDF of the fraction of occupation time of M cells (TM /t) for different values of
M/(N + 1) for the unbiased CTRW. We used α = 0.8. The dash–dotted, dotted, and solid curves
correspond to M/(N + 1) = 1/7, 3/7, 5/7 respectively. In all cases we do not consider cells on the
boundary. The symbols correspond to simulation results while the curves correspond to analytic
results, equation (48), without fitting.
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Figure 5. A CTRW in a harmonic potential U (x) = x2, with temperature T = 3. The dot–
dashed curve shows the scaled potential; the solid curve shows the Boltzmann probability. The
plus signs show the distribution of the location of many particles after long walking time, i.e.,
the ensemble average, which as expected coincides with the Boltzmann probability. The circles,
squares, and stars show the fraction of visits number for α = 2, 0.8, 0.3 respectively. For all cases
it coincides with the Boltzmann probability. The figure illustrates that the visitation fraction rule
of equation (38) holds.

was found that the results are in excellent agreement with the prediction of the analytic theory,
equation (48). The results for different values of α are presented in figure 6.

In conclusion, there are few key points in our theory:

(a) In the CTRW with power law behaviour the distribution of the visitation fraction is the
same as in a CTRW with finite mean sojourn time, i.e., nx/n = peq.
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Figure 6. The PDF of the fraction of occupation time of the site x = 0 during a CTRW in a
harmonic potential well U(x) = x2 and at temperature T = 3. The plus signs and stars show the
simulation results with α = 0.3, 0.8 respectively, while the solid lines show the analytic results
without fitting. The arrow shows the value expected from Boltzmann statistics. In this simulation
we used 106 paths each of duration 106 to produce the PDF.

(b) The PDF of the fraction of occupation time is a delta function around the Boltzmann
probability in the case of finite mean sojourn time (ergodic system), while in the case of
diverging mean waiting time the PDF of the occupation time is given by δα(Rx , Tx/t),
equation (32).

(c) The exponent α is the same as the exponent describing the subdiffusion 〈x2〉 ∝ tα .
(d) The asymmetry parameter Rx is related to the Boltzmann probability and to the partition

function according to equation (50).
(e) The ensemble average is given by Boltzmann–Gibbs statistics when the detailed balance

condition is applied.
(f) A generalization of Boltzmann–Gibbs statistical mechanics for systems with infinite mean

sojourn time is possible once the fraction of occupation time PDF, δα(Rx , Tx/t), is known.
(g) If thermal detailed balance condition does not hold, our main result, equation (32) which

yields the PDF of occupation fraction, still holds. However, now the asymmetry parameter
Rx is found from the non-Boltzmann ensemble equilibrium equation (35).

Recently, the dynamical foundation of weak ergodicity breaking was investigated in [29], for
deterministic (non-stochastic) maps.
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Appendix A. Solving the recursion relation for ϕx in the biased case

In order to solve the recursion relation of ϕx we define

ϕx = gx

hx
= zql

1 − z(1 − ql)
gx−1

hx−1

= zqlhx−1

hx−1 − z(1 − ql)gx−1
, (52)
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and hence we may write out the iteration rules

gx = zqlhx−1 (53)

hx = hx−1 − z(1 − ql)gx−1. (54)

Substituting equation (53) into (54) one obtains

hx = hx−1 − z2ql(1 − ql)hx−2 . (55)

We look for a solution of the form

hx = A+λ
x
+ + A−λx

−, (56)

which, together with equation (55), yields

λ± (1 − λ±)− z2ql(1 − ql) = 0. (57)

Solving the equation leads to

λ± = 1 ± √
1 − 4z2ql[1 − ql]

2
. (58)

The seeds of the recursion are

h0 = 1; g0 = zql

h1 = 1 − z2ql; g1 = zql,
(59)

and the equations for A± (defined in equation (56)) are

A+ + A− = 1
A+λ+ + A−λ− = 1 − ql z

2.
(60)

The solution of these equations is

A− =
(
1 − z2ql

) − λ+[
λ− − λ+

] ; A+ = − (
1 − ql z2

)
+ λ−[

λ− − λ+
] . (61)

First we find p̃L−1(z) according to equations (21), (56), as

p̃L−1 (z) = λL−2
+ + A−

[
λL−2− − λL−2

+

]
λL−2

+ + A−
[
λL−2

− − λL−2
+

] − z2ql [1 − ql]
[
λL−3

+ + A−
[
λL−3

− − λL−3
+

]]
and then F̃(z) is given by

F̃ (z) = [1 − ql] z

1 − z2ql [1 − ql]
A+λ

x−3
+ +A−λx−3−

A+λ
x−2
+ +A−λx−2−

. (62)

Appendix B. Generalized arcsine distribution

Consider a stochastic process, defined as follows. Events occur at random times t1, t2, . . .
measured from some time origin t = 0 (see figure B.1). We take the origin to be at an event
occurrence time. The intervals between events, τ1 = t1, τ2 = t2 − t1, . . ., are independent
random variables. The even intervals are identically distributed random variables with PDF
ψ−(τ ), and the odd intervals are identically distributed random variables with PDFψ+(τ ). One
can look at the process as a set of transitions between two states (+ and −), characterized by
the sequence {τ +

1 , τ
−
2 , τ

+
3 , τ

−
4 , τ

+
5 , . . .} of ± sojourn times. This is a renewal process with two

waiting time PDFsψ+ andψ−. Let us introduce some quantities that we use in our calculations.
First the number of events in the interval (0, t) is denoted by n, and is the random variable for
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the largest i for which ti < t (see figure B.1). The time of occurrence of the last event before
t , that is of the nth event, is therefore

tn = τ1 + τ2 + · · · + τn . (63)

The backward recurrence time, τ ∗, is defined as the time measured backward from t to the last
event before t, i.e.,

τ ∗ = t − tn . (64)

A schematic diagram of the process with all these times is shown in figure B.1. The occupation
times T+ and T−, i.e., the times spent by the process in + and − states respectively up to time
t , can be expressed as the sums of the sojourn times in each state. Assume that at t = 0 the
particle was in the + state; then

T+ = τ1 + τ3 + · · · + τn, (65)

T− = τ2 + τ4 + · · · + τn−1 + τ ∗, (66)

if n = 2k + 1, and

T+ = τ1 + τ3 + · · · + τn−1 + τ ∗, (67)

T− = τ2 + τ4 + · · · + τn, (68)

if n = 2k. We denote by f ±
t (T+) the PDF of T+ in a measurement of length t, given that at

t = 0 the process starts at a ± state. f ±
t,n(T+) will denote the PDF of T+ in a measurement of

length t , given that at t = 0 the process starts at a ± state and n events occur in the interval
(0, t). f ±

t (T+) can be expressed as the sum over n of f +
n,t (T+), i.e.,

f +
t (T+) =

∞∑
n=0

f ±
n,t (T+). (69)

We introduce f +
n,t (T+) as

f +
n,t (T+) =

〈
δ

(
T+ −

n∑
i=1

(oddi ′s)

τi

)
I (tn < t < tn+1)

〉
(70)

for n = 2k + 1, and

f +
n,t (T+) =

〈
δ

(
T+ −

n−1∑
i=1

(oddi ′s)

τi − τ ∗
)

I (tn < t < tn+1)

〉
(71)

for n = 2k. I (tn < t < tn+1) = 1 if the statement in the parentheses is true, and 0 otherwise.
The brackets 〈 〉 denote the average over all τ s.

Performing Laplace transformation (LT) as follows:

f̂n,s (u) ≡
∫ ∞

0
e−uT+

∫ ∞

0
e−st fn,t (T+) dT+ dt (72)

and using the definition of the LT of the sojourn times PDF

ψ̂± (s) =
∫ ∞

0
e−sτψ± (τ ) dτ, (73)

one obtains

f̂ +
2k,s (u) = ψ̂k

+ (s + u) ψ̂k
− (s)

1 − ψ̂+ (s + u)

s + u
, (74)

f̂ +
2k+1,s (u) = ψ̂k+1

+ (s + u) ψ̂k
− (s)

1 − ψ̂− (s)
s

, (75)



S4302 G Bel and E Barkai

0 t
1

t
2

t
3

t
4

t
n-1

t
n

t t
n+1t’

0

1

θ(
t’

)

τ*τ
n

τ5τ4τ3τ2τ1

Figure B.1. An example of a two-state renewal process. The function θ is equal to one if the
process is in the + state and zero if it is in the − state.

for odd and even n respectively. Hence, summing over k we find

f̂ +
s (u) =

[
ψ̂+ (s + u)

1 − ψ̂− (s)
s

+
1 − ψ̂+ (s + u)

s + u

]
1

1 − ψ̂+ (s + u) ψ̂− (s)
. (76)

Following the same methods as were used above, one can easily obtain ˜f −
s (u) as

f̂ −
s (u) =

[
ψ̂− (s)

1 − ψ̂+ (s + u)

s + u
+

1 − ψ̂− (s)
s

]
1

1 − ψ̂+ (s + u) ψ̂− (s)
. (77)

In the case where the PDFs for sojourn times in the + and − states (namely ψ±(τ ))
have different asymptotic time dependences (i.e., ψ+ exponential and ψ− a power law with a
diverging first moment), the PDF of the occupation time will be dominated by the PDF which
decays more slowly. The most interesting case is when the ψ±(τ ) have the same α, but not
necessarily the same constant of proportionality. We consider

ψ± (τ ) ∼ a±τ−(1+α)/ |� (−α)| (for τ → ∞), (78)

where a± is a parameter with units [τα], and 0 < α < 1, leading to a diverging mean sojourn
time. According to the Tauberian theorem [28] the large t, T+ behaviour corresponds to the
behaviour for small u, s in Laplace space. For the above-mentioned sojourn time PDF, the
small u expansion is

ψ̂± (u) ∼ 1 − a±uα + · · · . (79)

Substituting the expansion of ψ̂±(u) into the general results obtained in equations (76), (77)
and taking the limit as u and s go to zero, we find the asymptotic behaviour of the PDF of
occupation times:

f̂ ±
s (u) ∼ 1

s

R
(
1 + u

s

)α−1
+ 1

R
(
1 + u

s

)α
+ 1

u, s → 0 (80)

where

R ≡ a+/a−. (81)
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Note that the asymptotic behaviour of f̂ ±
s (u) is independent of the initial state (±); thus we

omit it hereafter. One can verify the normalization of ft (T+) by checking that f̂s(0) = 1
s ;

moreover one can see that in the case α = 1, i.e., when the mean sojourn times are finite,
ergodicity is recovered, or, in other words, the PDF converges to a single value which is equal
to the ensemble average

ft (T+) |α=1 = δ

(
T+ − t

〈τ+〉
〈τ+〉 + 〈τ−〉

)
. (82)

In the last equation we used the fact that in the case α = 1, a± = 〈τ±〉, where 〈τ±〉 is the
average waiting time in the ± state respectively. Note that the average occupation time of each
state, for any α, is equal to 〈T±〉 = t a±

a++a−
which is independent of α, i.e., in the ergodic case,

the PDF converges to a delta function on its mean value.
In order to invert the double LT of the PDF in equation (80),we use the following technique

introduced by Godreche and Luck [27]. If for the double LT the following scaling:

f̂s(u) = 1

s
g

(u

s

)
(83)

as u, s → 0 is valid, then the asymptotic behaviour of ft ( p̄+
t = T+

t ) as t, T+ → ∞ is given by

ft
(

p̄+
t

) = − 1

πx
lim
ε→0

Im

[
g

(
− 1

x + iε

)]∣∣∣∣
x=p+

t

. (84)

In our case, according to equation (80),

g
(u

s

)
= R

(
1 + u

s

)α−1
+ 1

R
(
1 + u

s

)α
+ 1

, (85)

and the PDF of the fractional occupation time is

ft
(

p̄+
t

) = δα
(
R, p̄+

t

)
(86)

where

δα (R, x) = sin [απ]

π

Rxα−1 [1 − x]α−1

R2 [1 − x]2α + x2α + 2R [1 − x]α xα cos (απ)
. (87)

This PDF was obtained by Lamperti [20] using different methods, and the case for R = 1 was
obtained recently by GL [27].
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